<span id="vlvnn"><dl id="vlvnn"></dl></span> <span id="vlvnn"><dl id="vlvnn"></dl></span><strike id="vlvnn"><dl id="vlvnn"><ruby id="vlvnn"></ruby></dl></strike>
<span id="vlvnn"><video id="vlvnn"><strike id="vlvnn"></strike></video></span>
<ruby id="vlvnn"><i id="vlvnn"></i></ruby>
<span id="vlvnn"></span><ruby id="vlvnn"><i id="vlvnn"></i></ruby>
<span id="vlvnn"></span>
<span id="vlvnn"><video id="vlvnn"></video></span>
<del id="vlvnn"><progress id="vlvnn"></progress></del>
<strike id="vlvnn"><i id="vlvnn"><del id="vlvnn"></del></i></strike><span id="vlvnn"></span>
<strike id="vlvnn"></strike>
<span id="vlvnn"></span>


  • Developed a multi-touch attribution model using the Markov chain concept to accurately identify the contribution of SEM channel on the GMV and ROAS across the Pet categories.
  • Established the relationship between Spend vs Gross Margin from SEM channel using the polynomial Regression model.
  • Optimized spend by maximizing ROI of channels using Linear programming and simulation models.


The client can maximize the overall ROI by allocating more budget to the SEM channel which has higher returns


With reallocated spend across SEM channel and ROI, the business would achieve ~25% higher GMV across the pet categories when compared to the previous spend allocation.