<span id="vlvnn"><dl id="vlvnn"></dl></span> <span id="vlvnn"><dl id="vlvnn"></dl></span><strike id="vlvnn"><dl id="vlvnn"><ruby id="vlvnn"></ruby></dl></strike>
<span id="vlvnn"><video id="vlvnn"><strike id="vlvnn"></strike></video></span>
<ruby id="vlvnn"><i id="vlvnn"></i></ruby>
<span id="vlvnn"></span><ruby id="vlvnn"><i id="vlvnn"></i></ruby>
<span id="vlvnn"></span>
<span id="vlvnn"><video id="vlvnn"></video></span>
<del id="vlvnn"><progress id="vlvnn"></progress></del>
<strike id="vlvnn"><i id="vlvnn"><del id="vlvnn"></del></i></strike><span id="vlvnn"></span>
<strike id="vlvnn"></strike>
<span id="vlvnn"></span>

APPROACH

To address this, the team at Tredence developed an analytically robust approach with the following specifications:

  • Identified primary drivers among the selected machine variables using ML variable reduction techniques
  • Driver models to understand key influential variables and determine the energy consumption profile
  • Identified the right combination of drivers under the given production constraints – time, quantity and quality
  • Optimization engine to provide the machine settings for a given production plan

KEY BENEFITS

  • The learnings will be used across similar machines to create operational guidelines for reducing energy consumption

RESULTS

  • We were able to achieve a ~5% reduction in energy consumption across major machines

第一次俄罗斯破女初视频